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Abstract 
 
The present work addresses the identification and characterization of vortical flow structures 
as occurring during the pumping cycle of human hearts. The inflow phase of this cycle is 
largely dominated by the formation of a vortex ring when blood enters the left ventricle (LV) 
through the mitral valve. In case of healthy hearts, this vortex ensures both, high mixing level 
and short residence time in the LV. As such, detailed knowledge of vortex formation and lo-
cation as well as persistence of adverse recirculation zones is of prime importance to evalu-
ate the health state of a patient’s heart and predict the resulting flow manipulations of poten-
tially necessary heart surgeries. The purpose of the present study, therefore, concentrates 
on a comparison of two different vortex detection methods - namely the 𝑄-criterion and the 
Finite-Time Lyapunov Exponent (FTLE). Even though the former reveals an appropriate es-
timate on the vortex location, thus formation process and trajectory, a clear separation of a 
vortical structure from the surrounding flow is extremely difficult and appears somewhat arbi-
trary. This issue is met by application of the FTLE, which is calculated based on the Lagran-
gian properties of particles and consequently ensures an identification of unsteady Lagrangi-
an coherent structures (LCS), i.e. vortices and persistent recirculation zones. Both applied 
methods are first applied to a generic two dimensional (2D) test case of counter-rotating vor-
tices, so as to introduce and compare the approaches. Subsequently, three dimensional (3D) 
numerical data of flow through the LV is characterized by means of both approaches, which 
in combination provide the desired information on heart flow vortices. 
 
Background and Objectives 
 
Today, the overall flow topology in a healthy human heart is well known to be dominated by 
the formation of a vortex ring during the inflow phase (diastole), which is supposed to be re-
sponsible for the washout of the LV. Acting like a pump, the LV is responsible for the 
transport of fresh oxygenated blood from the lungs into the body using two valves to regulate 
the flow direction. After the breakup of the vortex ring into smaller structures, the flow is redi-
rected towards the aorta (systole) forming a helical shape (Spiegel 2009). As such, the flow 
structure is highly unsteady and 3D. Modern imaging methods like the time-resolved 2D 
Doppler echocardiography allow in-situ heart-flow measurements, which in turn uncover 
changes of the intra-ventricular flow dynamics of diseased hearts. It is up to the examiner to 
determine the severity level of a heart disease like the dilative cardiomyopathy, where the 
residence time of blood is of particular interest; see Hendabadi et al. (2013). Since recircula-
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tion zones may result in thrombus formation, it is beneficial to identify such regions and in 
turn predict flow modifications of upcoming surgical procedures.  

Numerical simulations have become a valuable means to reconstruct patient specific 
heart flow, as the entire flow field can be determined at once. Moreover, flow field changes 
can be predicted as function of (simulated) heart shape modifications through surgeries. De-
spite the variety of post processing techniques to extract clinical relevant information, the full 
characterization of the flow field remains challenging. Provided that the simulation techniques 
appropriately mimic patient specific flow conditions, then the commonly applied local vortex 
detection methods (𝑄, ∆, 𝜆2) reveal the majority of overall flow features with reasonable ac-
curacy. In contrast, no information on fluid residence times or mixing levels can be deter-
mined with local approaches. Consequently, if such information is desired, additional particle 
tracking algorithms or scalar transport models become necessary (Spiegel 2009). For in-
stance, Hendabadi et al. (2013) successfully applied the FTLE on 2D Doppler echocardiog-
raphy data of a LV and extracted flow regions of blood inserted during different heartbeats. 
This study demonstrated that a calculation of particle residence times from Eulerian data is 
possible. Despite these first promising results, the accuracy level of 2D information remains 
uncertain, as the 3D character of the flow is ignored during track estimation.  

Applied to a 3D simulation of a healthy patient specific LV, the main objective of the 
present work is the comparison of local Eulerian and time-integrating Lagrangian methods, 
so as to identify and combine the strengths of either approach. To reduce the flow complexity 
and focus on the purpose of work, the heart valves are modelled as 2D porosity planes, the 
shape of the heart wall is averaged over five full heart beat cycles 𝑇 (preset: 60 bpm / 1Hz) 
and blood is treated as Newtonian fluid. The flow fields are compared during the diastole of 
the fifth heartbeat, i.e. 4 ≤ 𝑡∗ = 𝑡/𝑇 ≤ 4.5 , to ensure periodicity of the flow. Figure 1a) shows 
the corresponding stream lines that already provide some confidence on the location of the 
vortex ring. Two planes were defined to compare the considered detection methods: a plane 
along the short axis (SA) that cuts through the base and a plane along the long axis (LA) of 
the LV that cuts through the valve planes (compare Figure 1b)). 

 

 
Fig. 1: LV flow at 𝑡∗ = 4.24 visualized with a) 3D streamlines and b) contour plots colored by magni-

tude of velocity on 2D slices through the short axis (SA) and the long axis (LA). 
 
The afore-mentioned artificial (yet insightful) 2D test case comprises two horizontally mean-
dering and counter-rotating vortices, as already used by Shadden et al. (2005). This periodi-
cally varying double-gyre is expressed by the analytical stream-function  

𝜓(𝑥,𝑦, 𝑡) = 0.1 sin�𝜋𝑓(𝑥, 𝑡)� sin(𝜋𝑦), (1) 
which is evaluated over the domain [0,2] × [0,1] with 

𝑓(𝑥, 𝑡) = 0.25 sin(0.2𝜋𝑡) 𝑥2 + (1 − 0.5  sin(0.2𝜋𝑡)) 𝑥. (2) 
For more details on double-gyre flow please refer to Shadden et al. (2005) or Haller (2011).  
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Methods 
 
Local vortex detection method – 𝑸-criterion 
The three most common local vortex detection methods are 𝑄-, 𝜆2- and 𝛥-criterion, which are 
all evaluated from the velocity gradient tensor ∇𝑢�⃗ . Thus, the calculations for these methods 
can be performed point-wise and all criteria are then visualized by iso-surfaces of the result-
ant scalar values. 
The 𝑄-criterion introduced by Hunt et al. (1988) considers the difference between vorticity 
and strain rate. Mathematically, the quantity 𝑄 is the second invariant of the characteristic 
equation of ∇𝑢�⃗  as defined by 

𝑄 =
1
2
���𝛺𝑖𝑗��

2 − ��𝜖𝑖𝑗��
2� > 0, (3) 

where 𝛺𝑖𝑗 and 𝜖𝑖𝑗 represent the rotation tensor and the strain rate tensor respectively. A vor-
tex is present where 𝑄 > 0, i.e. where rotation predominates shear. 

Note that initially both, the 𝛥 -criterion as proposed by Chong et al. (1990) and the 𝜆2-
criterion, as proposed by Jeong and Hussain (1995), were implemented and tested on vari-
ous cases, including the flow scenarios of the double-gyre flow and the LV presented in this 
work. However, the results of all three local methods (𝑄,Δ, 𝜆2) did not differ all too much. 
Therefore, the present work only considers the 𝑄-criterion and the focus of the study rather 
concentrates on the comparison with the FTLE approach. Nonetheless, it is worth to note 
that the main drawback of all local methods is the lack of a clear definition of a vortex bound-
ary, because arbitrarily chosen iso-values of 𝑄-, 𝜆2- or 𝛥 indicate vortical structures and the 
corresponding spatial dimensions. 
 
Finite-Time Lyapunov Exponent  
LCS are material manifolds, which act as precise vortex boundaries (Grigoriev 2012). These 
are represented as material lines in 2D and material surfaces in 3D flows. Haller (2011) 
defines hyperbolic LCS as locally strongest repelling or attracting material surfaces. The LCS 
can be extracted by application of the FTLE. First proposed by Pierrehumbert (1991), the 
FTLE defined the changing distance of two initially neighboring particles over a particular 
integration time. An increasing distance between the particles, increases likewise the FTLE-
value. Later, Haller et al. (2000, 2002) and Shadden et al. (2005) provided a profound 
mathematical description and a new approach to calculate fields, that nowadays are often 
called classical or flow-map FTLE-fields. Thereby, Shadden et al. defined LCS as ridges of 
the FTLE-field, which precisely define vortex boundaries, but also indicate flow separatrices. 

Particles can be tracked forward or backward in time to reveal repelling or attracting 
manifolds, respectively. As the procedure is the same, only the approach to extract repelling 
structures (by tracking forward in time) is presented here in detail. The basic idea is to 
observe two particles starting at time 0t  at the position 0x  and its immediate vicinity 

00 xx 
δ+ . The Lyapunov exponent 𝜎𝐿 describes the rate of separation of the trajectories of 

the two particles with time and thereby gives information about the instability of the starting 
point according to 
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In practice, the unsteady flow information is only known for finite times. Therefore, an 
effective finite–time exponent (see Kantz, 1994) for the FTLE is defined as 
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The separation at time t  can be expressed as 
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where the distance )(txδ between the two observed particles at time t  can be described by 
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Here, the flow-map t
t 0

Φ can be calculated by seeding a particle at 0x and track it for the time 

t  using the relation 
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which describes the current position of a particle that started at ( 0t , 0x ). Shadden et al. 
(2005) linearized Equation (7) by a Taylor series up to the first derivative, 
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which introduces a second order error, but ensures a much more efficient calculation. As the 

gradient of the flow map t
t

t
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is a real matrix, the Euclidean norm of )(txδ  can 

be simplified to   
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The positive definite matrix 
t
t

t
tC

00
T Φ∇Φ∇= )( , (11) 

which represents the right Cauchy-Green deformation tensor, is responsible for the stretching 
of the infinitesimal small perpetuation with arbitrary direction 0xδ . If the direction of 0xδ  is 

the same as the direction of the eigenvector of C  connected to the largest eigenvalue 

)(max Cλ , the perpetuation is maximized and can be expressed as 

0xCtx 
δλδ )()(max max= . (12) 

Inserting this information into Equation (10) leads to 
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where 

)(ln max C
tt

t
t λσ

0

1
0 −
=  (14) 

is called the largest FTLE for forward integration describing how strong the flow is repelled in 
forward time. Therefore, the ridges of the FTLE-field act as hyperbolic LCS. Applying the 
absolute value of the integration time || 0tt −  in the above formulas the equations become 

applicable to both, forward integration and backward integration (to extract attracting LCS).  
The FTLE-field is calculated numerically on an Eulerian grid. Hence, the result might 

be affected by the chosen spatial resolution. For instance, if a coarse mesh is chosen for the 
tracked particles, some smaller FTLE-structures may remain hidden. An even more critical 
parameter in the described concept is the integration time. Usually, a longer integration time 
leads to steeper ridges of the FTLE-field. However, in unsteady flows a material line might 
lose its hyperbolic character after a certain time and structures will vanish if the integration 
time is too long. 
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Results and Discussion 
 
To emphasize the main differences between 𝑄-criterion and FTLE, either approach will first 
be elaborated based on the 2D double-gyre data. Subsequently, the application on the 3D 
heart flow data is discussed.  
 
double-gyre flow 
The usage of an Eulerian description of the flow, i.e. the 𝑄-criterion, enables a fast and easily 
computed on-site characterization. Two instantaneous snap shots (at time 𝑡1 and 𝑡2) are 
shown in Figure 2, which indicate a fifth of the perturbation period; see Eqs. (1) and (2). The 
upper row of Figure 2 shows the velocity vectors superimposed onto contours of 𝑄. As seen, 
it is perfectly able to capture the presence of two vortices within the domain at every time 
point, indicated by the solid iso-lines which mark positive values of 𝑄. Regions where no vor-
tex is identified are found in the four corners of the domain and the vortex-vortex interface 
(dashed iso-lines). Observing the 𝑄-criterion with time, the positive regions expand and con-
tract as expected for the investigated flow field.  

Obviously both, the rotatory behavior of the flow and vortex motion, are well captured 
by the local vortex detection method. However, at no point in time a chaotic behavior of the 
flow is indicated. Furthermore, it is impossible to predict the trajectory of particular fluid ele-
ments, which is essential for residence-time estimates, for instance. These shortcomings will 
be met by the FTLE approach in the following. 

 

 
Fig. 2: analysis of the double-gyre flow field at two snap shots illustrated by (top) the application of the 
𝑄-criterion (solid lines indicate 𝑄 > 0, dashed lines indicate 𝑄 < 0) and (bottom) the FTLE method 

(white lines mark ridges of backward FTLE, black lines mark ridges of forward FTLE 

 
For the FTLE-calculation, an integration time of 1.5 perturbation periods is chosen. The lower 
part of Figure 2 shows the evolution of LCS at identical times as used before. While the black 
ridges are the local maxima of the forward FTLE calculation and therefore repelling LCS, the 
white ridges represent attracting particle lines obtained by backward FTLE. To visualize and 
explain the effect of LCS, particle groups are seeded at two locations around the different 
manifolds. Thereby, several features of the LCS are emphasized. First, the attraction and 
repulsion of particles normal to the LCS can be observed. Second, a corresponding folding 
or stretching parallel to the LCS can be studied, which is caused by the incompressibility of 
the fluid. Furthermore, the separating character of LCS as material lines of negligible 
amounts of cross flux is demonstrated (see Shadden et al., 2005). 

45 - 5



The black ridges in Figure 2 imply a significant growth of the distance between two particles 
seeded near the ridge during the integration time. Note that the change of their distance to 
each other is not monotonic in time. The FTLE-field only provides information about the 
change between the start and the end of the integration time and not about its evolution. For 
this example the lower half of the middle axis between the two gyres acts as the main repel-
ling feature in the flow, it can be stated, that all of the particles placed at the black ridge will 
reach this point during the integration time. As the white, attracting ridges act backward in 
time, there is no direct information about future movement of the flow in their structures. This 
explains why attracting and repelling particles can be parallel in one picture if the integration 
time is chosen very long (as done in the present example). Nevertheless, as the stable mani-
folds attracted particles in the past, they are as well organizing structures of the flow. How-
ever, for shorter integration times attracting and repelling structures might no longer be paral-
lel and the influence of the different time spans becomes less and less important. Further-
more, the FTLE calculation reveals different features of the flow, depending on the chosen 
integration time. For long integration times it is possible to interpret the evolution of a flow 
beyond the boundaries of the considered flow domain, while the information about the de 
facto hyperbolic structures at the very moment where the integration starts could be lost. 
Therefore, shorter integration times are chosen regarding the heart flow to detect precise 
vortex boundaries. 
 
LV flow 
The transport of blood by means of vortex-ring formation is supposed to be more efficient as 
compared to a steady, straight jet of blood (Gharib et al. 2006). Therefore, a proper detection 
is essential for the characterization of the heart’s condition and efficiency. On the left of Fig-
ure 3, the main characteristics of the inflow phase are demonstrated based on iso-surfaces 
of 𝑄 at two instances during the diastole. At the initial phase of the filling process (𝑡∗ = 4.24) 
of the LV the developed vortex ring is clearly visible. The SA view shows the outer diameter 
of the vortex ring while the LA view depicts the inner radius. Afterwards, the vortex ring is 
propagating through the LV and slightly tilts counter clockwise. At 𝑡∗ = 4.4, the ring shape of 
the vortex ring can no longer be clearly identified as it is already significantly deformed and 
its breakup starts. After the tilting of the vortex, it rapidly becomes unstable and breaks down 
into smaller structures. Even though not shown here, it is worth to note that during the out-
flow phase, the 𝑄-criterion again identifies a tubular connected structure where the blood flow 
forms helical streamlines. 

As a vortex is connected to a pressure minimum, the identification of the vortex ring 
also identifies the location of a pressure minimum and its movement through the flow region. 
Furthermore, regions of negative 𝑄 indicate that the strain rate predominates rotation; see 
Equation (3). As the strain rate in a Newtonian fluid is proportional to the shear stress, mini-
mal 𝑄 values imply maximum shear. This in fact is important information, since high rates of 
shear can destroy blood cells and enhance thrombus formation. This insight remains hidden, 
when applying the FTLE. 

As already mentioned the heart flow data is evaluated with short integration times. 
Thereby, the inflow of the blood into the left ventricle is visualized using the backward FTLE 
which shows a clear vortex boundary. The right column of Figure 3 shows bell-like attracting 
structures in the LV during the early phase of the inflow. The blood particles entering from 
the left atrium impinge on the relatively slow moving blood particles in the LV, thereby get 
distracted and change their movement direction. They get folded normal to the detected ma-
terial surface and stretched parallel to it, which indicates that an attracting manifold is re-
vealed by the FTLE. Observing the extracted ridges from 𝑡∗ = 4.24 to 𝑡∗ = 4.4, a transport of 
the detected LCS during the diastole is clearly visible.  

Blazevski and Haller (2014) state that the ridges of the FTLE-field can be interpreted 
as transport barriers. These findings show that the incoming blood does not mix with the pre-
sent blood during the inflow phase. Such information is not accessible using a local vortex 
detection method. The manifold can be observed until it collides with the wall of the heart. 
Mixing takes place and the choice of a higher spatial grid resolution appears to be required in 
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order to reveal the smaller structures during the mixing process. Nonetheless, observation of 
those structures will be beneficial in order to extract information about the degree of mixing 
and the residence time of fluid elements in the LV.  

 
Fig. 3: Contours of (left) Q-criterion and (right) FTLE of LV flow displayed on SA and LA 

 
Several difficulties are still present during the generation of the FTLE field that have to be 
addressed in order to judge on the quality of the presented results concerning the LV flow. 
For instance, the particle tracking uses a 4th order Runga-Kutta algorithm, which sometimes 
allows particles to leave the virtual heart model through the moving walls. As such, overesti-
mated attracting LCS along the heart wall might be determined. Fortunately, this overpredic-
tion does not affect the inner flow region. Additionally, it turned out to be extremely challeng-
ing to extrapolate the velocity field properly outside of the heart, since a more realistic calcu-
lation of backward FTLE during the early diastole and forward FTLE during the late systole is 
required. To overcome this issue in the first instance, the examined time points, position of 
seeded particles and integration times were chosen accordingly. 
 
Conclusions and Future Work 
 
Both examined methods, the 𝑄-criterion as an example for a local Eulerian vortex detection 
approach and the FTLE as a Lagrangian approach, are able to provide meaningful insight 
into LV flow properties. The Eulerian approach detects the expected vortices and therefore 
provides easy detection of pressure minima or flow abnormalities. Furthermore, it detects 
regions of high shear stress that can damage the blood cells. However, due to the continu-
ous distribution of 𝑄 it is not possible to define clear vortex boundaries or gain information 
about the temporal evolution. 

The skeletal structure given by the FTLE calculation of attracting and repelling mani-
folds provides meaningful insights about the properties of the flow during the integration time 

45 - 7



including cause-effect relations, recirculation zones and material borders. As such, the exam-
iner is able to define mixing level and residence time of fluid elements. A combined analysis 
of the Eulerian and the Lagrangian processing results of the LV-flow data provides a deeper 
insights into the complex flow scenario at hand. 

In future, the definition of clear vortex boundaries using a local detection method 
should be studied, in order to provide easier observation of the time-dependent vortex be-
havior, i.e. vortex velocity. Additionally, different ways to adapt the FTLE method to heart 
flows will be examined including longer integration times, finer grids, detection of inflow and 
outflow regions in different integration times and calculations of residence times of particles 
in the heart. Finally, is desirable to evaluate the numerical experiments with measured flow 
data. Current efforts at ISTM include investigations to overcome the limited optical access of 
such flow scenarios based on 3D particle tracking. Future investigations foresee comparison 
of computational results with data obtained from optical measurements, i.e. volumetric veloc-
imetry.  
 
References 

 
Blazevski, D., Haller, G. (2014). Hyperbolic and elliptic transport barriers in three-dimensional un-

steady flows. Physica D, 273-274, pp. 46-64 
Chong, M., Perry, A., & Cantwell, B. (1990). A general classification of three-dimensional flow fields. 

Phys of Fluids A: Fluid Dynamics(1989-1993), pp. 765-777. 
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J., Dabiri, J. O. (2006). Optimal vortex formation as 

an index of cardiac health. Proceedings of the National Academy of Sciences 103(16), pp. 
6305–6308 

Grigoriev, R. O. (2012). Mixing in laminar fluid flows: From microfluidics to oceanic currents. Transport 
and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, pp. 1-4. 

Haller, G., Yuan, G. (2000). Langrangian coherent structures and mixing in two-dimensional turbu-
lence. Physica D: Nonlinear Phenomena, 147(3), pp. 352-370. 

Haller, G. (2002). Langrangian coherent structures from approximate velocity data. Phys of Fluids, 
14(6), pp. 1851-1861. 

Haller, G. (2011). A variational theory of hyperbolic langrangian coherent structures. Physica D: 
Nonlinear Phenomena, 240(7), pp. 574-598. 

Hendabadi, S., Bermejo, J., Benito, Y., Yotti, R., Fernández-Avilés, F., Álamo, J. C., et al. (2013). 
Topology of Blood Transport in the Human Left Ventricle by Novel Processing of Doppler 
Echocardiography. Annals of Biomedical Engineering, 41(12), pp. 2603-2616. 

Hunt, J., Wray, A., Moin, P. (1988). Eddies, streams, and vonvergence zones in turbulent flows. In 
Studying Turbulence Using Numerical Simulation Databases, 2, pp. 193-208. 

Jeong, J., Hussain, F. (1995). On the identification of a vortex. Jounal of fluid mechanics, pp. 69-94. 
Kantz, H. (1994). A robust method to estimate the maximal lyapunov exponent for a time series. 

Physics letters A, 185(1), pp. 77-87. 
Pierrehumbert, R. (1991). Large-scale horizontal mixing in planetary atmospheres. Phys of Fluids A: 

Fluid Dynamics (1989-1993), 3(5), pp. 1250-1260. 
Shadden, S. C., Lekien, F., & Mardsen, J. E. (2005). Definition and properties of lagrangian coherent 

structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: 
Nonlinear Phenomena, 212(3), pp. 271-304. 

Spiegel, K. (2009). Strömungsmechanischer Beitrag zur Planung von Herzoperationen. Dissertation at 
Karlsruhe Institute of Technology. 

 
  

45 - 8




