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Abstract 

 

To optimize the cultivation of phototroph microorganisms, an accurate prediction of light in-
tensity in photobioreactors is required. For this task, numerical simulation of radiative transfer 
necessitates an efficient coupling to flow solvers, since the optical properties of the cultiva-
tion broth depend on local concentrations of cells and gas bubbles. Based on recent devel-
opments, in this paper a lattice Boltzmann framework for radiative transfer is derived and 
validated against Monte Carlo simulations. Finally, the model is applied to predict the attenu-
ation of light in a microalgae biosuspension. 
 

Introduction 

 

The technical cultivation of phototroph microorganisms, such as microalgae, depends on an 
efficient supply of light in photobioreactors. While insufficient supply of light limits cell growth, 
high light intensities lead to inefficient metabolic utilization of the supplied radiative energy or 
even may cause inhibition of growth (Torzillo & Vonshak 2013). Since light is usually consid-
ered to be the growth-limiting factor in full scale cultivation plants, the optimization of culture 
conditions has to take radiative transport and local light intensities into account. In photobio-
reactors, the solution of the radiative field is connected to the flow field inside the reactor be-
cause optical properties of the biosuspension depend on local concentrations of cells and 
gas bubbles, which are usually non-homogenously distributed. Due to the need of a detailed 
prediction of the spatial radiative field, recently the Radiative Transfer Equation (RTE) was 
used instead of the one-dimensional Lambert’s Law to model radiative transfer in homoge-
nous biosuspensions (Kong & Vigil 2014). To solve the RTE, different numerical methods, 
such as Discrete Ordinate Methods or Monte Carlo Methods, can be applied (Modest 2013). 
However, these methods cause either high computational costs or require different numerical 
grids from those used in Computational Fluid Dynamics. Thus, the interpolation of infor-
mation between the different numerical grids becomes a necessity for the determination of 
local optical properties of biosuspensions. More recently, new approaches based on lattice 
Boltzmann methods were developed to solve the RTE in one and two dimensions (Asinari et 
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al. 2010, Ma et al. 2011, Di Rienzo et al. 2011, Bindra & Patil 2012). Since lattice Boltzmann 
methods are already applied successfully in Computational Fluid Dynamics, their application 
to radiative transfer seems to be promising to solve coupled radiation-flow problems on the 
same numerical grid with high accuracy. In this paper, a lattice Boltzmann framework for the 
simulation of radiative transfer is developed and applied to predict the three-dimensional 
steady-state distribution of monochromatic light in a homogenous microalgae biosuspension.  
 
Lattice Boltzmann Modeling of Radiative Transport in Participating Media 

 
The propagation of thermal radiative energy in participating media is affected by absorption, 
scattering and emission of radiation inside the medium. A common approach to predict radia-
tive fields is to balance the radiative intensity 𝐼 with respect to location 𝑟, direction of propa-
gation 𝑠 and time 𝑡 (Modest 2013). Moreover, the interaction of radiation with the medium 
depends on the frequency 𝜈 of the electromagnetic wave, and thus the balance equation 
becomes a seven-dimensional problem. By introducing the specific intensity 𝐼𝜈 and assuming 
steady-state of the radiative field, the RTE for an absorbing, emitting and scattering medium 
reads as follows. 

 
𝑠 ∇𝐼𝜈(𝑟, 𝑠) = 𝜅𝜈𝐼𝑏,𝜈 − 𝛽𝜈𝐼𝜈(𝑟, 𝑠) +

𝜎𝜈

4𝜋
∫ 𝐼𝜈(𝑟, 𝑠′)Φ(𝑠′, 𝑠)𝑑Ω

4𝜋

 (1) 

On the right-hand side of Eq. (1), the first term gives the emissivity of the medium, while the 
second term is the attenuation of intensity due to extinction. The extinction coefficient 𝛽𝜈 is 
related to the absorption coefficient 𝜅𝜈 and the scattering coefficient 𝜎𝜈 by the relation 
𝛽𝜈 = 𝜅𝜈 + 𝜎𝜈. The third term denotes the in-scattering of radiation in the balanced direction 𝑠 
from directions 𝑠’ within the solid angle 𝑑Ω as described by the scattering phase function 
Φ(𝑠′, 𝑠). 
By considering the specific intensity as flux of photons with at given frequency, the RTE can 
be derived directly from the Boltzmann equation (Bodenheimer et al. 2006). Thus, a lattice 
Boltzmann approach to simulate radiative transfer seems to be a natural choice. According to 
the pioneer work of Ma et al. (2011), the discretized radiative transfer equation in an absorb-
ing and emitting but non-scattering medium can be written in lattice Boltzmann terminology 
as follows. 

 
𝐼𝜈,𝑠(𝑟 + 𝑐𝑠Δ𝑡, 𝑡 + Δ𝑡) − 𝐼𝜈,𝑠(𝑟, 𝑡) = −

1

𝜏
(𝐼𝜈,𝑠(𝑟, 𝑡) − 𝐼𝜈,𝑠

𝑒𝑞(𝑟, 𝑡)) 

+𝑆𝜈,𝑠(𝑟, 𝑡)Δ𝑡 − 𝑐𝑠𝜅𝜈𝐼𝜈,𝑠(𝑟, 𝑡)Δ𝑡 
(2) 

In Eq. (2), 𝑆𝜈,𝑠 is the emission source term and 𝑐𝑠 is the speed of photon propagation in di-
rection 𝑠 on the lattice. The first term on the right-hand side is the collision term, which is ap-
plied to model particle-particle interactions. In contrast, Asinari et al. (2010) modeled a colli-
sion term to introduce isotropic scattering by considering scattering as collision with matter. 
Referring to both approaches, Bindra and Patil (2012) have shown that interparticle collisions 
of photons are neglectable. In addition, they replaced the scattering term as modeled by 
Asinari et al. (2010) by a simple source term and showed its applicability even to non-
isotropic scattering in two dimensions. The resulting model equation contains an additional 
scattering-source term, where a quadrature formula replaces the in-scattering integral given 
by Eq. (1). 

 
𝐼𝜈,𝑠(𝑟 + 𝑐𝑠Δ𝑡, 𝑡 + Δ𝑡) − 𝐼𝜈,𝑠(𝑟, 𝑡)

= 𝑆𝜈,𝑠(𝑟, 𝑡)Δ𝑡 − 𝑐𝑠𝛽𝜈𝐼𝜈,𝑠(𝑟, 𝑡)Δ𝑡 + 𝜎𝜈𝑐𝑠 ∑ 𝑤𝑠′𝐼𝜈,𝑠′(𝑟, 𝑡)

𝑀

Φ(𝑠′, 𝑠)Δ𝑡 (3) 
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In the next section, a lattice Boltzmann framework based on the model of Bindra and Patil is 
developed to reach a general model for more advanced velocity sets in three spatial dimen-
sions. 
 
Lattice Boltzmann Framework for the 3D Simulation of Radiative Transport 

 
A suspension of photosynthetic active microorganisms, such as microalgae, can be consid-
ered to be an absorbing and scattering medium. In contrast to abiotic matter, those microor-
ganisms do not, or only to a small extent, emit absorbed energy, since the energy is used for 
metabolic reactions. Thus, emission of radiative energy will be neglected in the following. 
The formulation given by Eq. (3) is already discretized in space, direction, time and frequen-
cy and the full model contains one balance equation for each of the 𝑀 discrete directions 
under consideration. In the cubic lattice, directions are defined by the connection between 
two lattice nodes as shown in Figure 1. In addition to the velocity sets shown, in this work 
D3Q50 and D3Q98 sets are used, which allow photons to propagate in the next outer belt 
and thus, increasing the angular resolution. It is important to state that the cubic nature of the 
lattice makes photons to travel different distances within one time step. Thus, the speed of 
photons depends on the direction of propagation which is not in accordance with the physics 
of light. Consequently, the model is restricted to the prediction of steady-state fields of specif-
ic intensity. However, the timescale of light propagation is much faster compared to time-
scales of cell movement in the flow or cell growth, which both result in changes of local opti-
cal properties. 
 

 
Figure 1: Examples of velocity sets applied for the simulation of radiative transfer. 

To solve the in-scattering term it is necessary to determine the direction-associated quadra-
ture weights, which are a measure of the solid angle related to each discrete direction. Fol-
lowing Huygens principle, every point along a wavefront can be considered as a source point 
of a new wave. Accordingly, every node in the lattice can be regarded to be a point source of 
electromagnetic waves. The electromagnetic wave propagates uniformly and the same 
amount of energy is emitted in every direction. Considering emitted energy as the emitted 
number of photons 𝑑𝑁, the quadrature weight measures the fraction of photons emitted in a 
certain direction.    

 
𝑑𝐸𝑠 ∝  𝑑𝑁𝑠  =  𝑁0𝑤𝑠 (4) 

Consequently, every direction has an equal quadrature weight. Conservation of energy re-
quires 

  ∑ 𝑤𝑠𝑀 = 1. (5) 
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Specific Intensity is defined as monochromatic radiative power per solid angle, which is re-
lated to the photon flux 𝑑𝑁/𝑑𝑡 into this solid angle. Using the definition 𝑑Ω = 4𝜋|𝑟|2𝑤𝑠, the 
following expression can be obtained, where ℎ is the Planck constant.  

 
𝐼𝜈,𝑠 = ℎ𝜈

𝑑𝑁

𝑑𝑡

1

𝑑Ω
= ℎ𝜈

𝑁0𝑤𝑠

𝑑𝑡

1

4𝜋|𝑟|2𝑤𝑠
 (6) 

Thus, the specific intensity of an electromagnetic wave emitted by a point source decreases 
with respect to the square of the traveled distance, which is in accordance to electromagnetic 
theory. However, this relation is always true, meaning that weights are basically free to 
choose. 

 
𝐼𝜈,𝑠(𝑟) ∝

1

|𝑟|2
 (7) 

In a next step, the scattering phase function Φ(𝑠′, 𝑠) has to be discretized. The scattering 
phase function gives the angular distribution of scattered radiation and can be considered as 
a probability density function that determines the amount of radiation being scattered out of 
the solid angle 𝑑Ω𝑠′ into the solid angle 𝑑Ω𝑠. The shape of the function depends on the scat-
tering regime (Rayleigh or Mie scattering) and can be estimated by the size parameter, which 
relates particle size to wavelength (Modest 2013). In case of microalgae biosuspensions, Mie 
scattering takes place and it was shown that the Henyey-Greenstein phase function Φ𝐻𝐺 is in 
good agreement with measured data of scattered light (Berberoglu et al. 2008, 2009). The 
main direction of scattering is defined by the asymmetry factor 𝑔, which is equal to the mean 
cosine of the phase function. The cosine of the scattering angle 𝑐𝑜𝑠(𝜃) is defined by the two 
directions under consideration. 

 
Φ𝐻𝐺(𝑐𝑜𝑠(𝜃)) =

1

4𝜋
 

1 − 𝑔2

(1 + 𝑔2 − 2𝑔 𝑐𝑜𝑠(𝜃))
3/2

  (8) 

The discretized phase function has to fulfill two conditions, namely conserving energy (zeroth 
moment equal to 1) and asymmetry (first moment equal to 𝑔). A common way to discretize 
the phase function in Discrete Ordinate Methods is to calculate discrete values from the scat-
tering angles. However, in case of strong anisotropy (|𝑔| > 0.7), this approach leads to a sig-
nificant violation of energy conservation (in the order of 101 to 102) due to the overestimation 
of forward or backward scattering and causes the need of normalization to fulfill the conser-
vation conditions (Hunter & Guo 2012). In this work, the phase function is discretized by car-
rying out the integral 

 
Φ𝐻𝐺 𝑠,𝑠′

=
1

4𝜋𝑤𝑠′
∫

1

4𝜋𝑤𝑠
∫ Φ𝐻𝐺(𝑐𝑜𝑠(𝜃)) 𝑑Ω𝑠′dΩ 𝑠

𝑑Ω𝑠⃗⃗𝑑Ω𝑠⃗⃗′

 (9) 

numerically to calculate a representative mean, capturing scattering from all possible direc-
tions within the solid angle 𝑑Ω𝑠′  into all possible directions represented by the solid angle 
𝑑Ω𝑠. Replacing the solid angles with the polar angles 𝛾 and the azimuth angles 𝜙 by using 

 𝑑Ω = sin(𝛾) 𝑑𝛾𝑑𝜙 (10) 

leads to a quadruple integral where the scattering angle is given by 

 cos (𝜃) = sin(𝛾𝑠) sin(𝛾𝑠′) cos(𝜙𝑠 − 𝜙𝑠′) + cos(𝛾𝑠) cos(𝛾𝑠′). (11) 

As it can be seen from Figure 2, the approach here applied ensures conservation of energy 
with a maximum error in the order of 10-1. However, the applied equal-quadrature scheme 
leads to increasing inaccuracy if anisotropy increases and necessitates the normalization of 
the discrete values. For this purpose, a direction-dependent normalization technique intro-
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duced by Wiscombe (1976) is applied. The discrete values of the scattering phase function 
Φ𝐻𝐺𝑠,𝑠′

 are normalized by 
 

Φ′𝐻𝐺𝑠,𝑠′
= Φ𝐻𝐺𝑠,𝑠′

 (1 + 𝛼 + 𝛼′) (12) 

in such a way that 𝛼 and 𝛼′ are the solutions of the equation system 
 

∑ Φ𝐻𝐺𝑠,𝑠′
 (1 + 𝛼 + 𝛼′)

𝑀

 = 1       𝑠 = 1 … 𝑀. (13) 

 
Figure 2: Conservation of energy, calculated as the numerical integral of Eq. (8) over the solid angle 
𝒅𝛀 = 𝟒𝝅. Left: before normalization; Right: after normalization. 

In lattice Boltzmann methods, physical quantities are transferred into lattice units by means 
of non-dimensional quantities. For radiation transfer, the dimensionless optical depth 𝜏 is 
defined as follows. 

 𝜏 = 𝛽Δ𝑥 (14) 

To ensure stability of the solution, the optical depth between two nodes in the lattice should 
stay below a threshold, which has to be specified in a grid convergence study. The number 
of nodes in one direction is then given by 𝑁𝑥 =

𝐿0𝛽

𝜏
+ 1, where 𝐿0 is the physical length of the 

simulation domain. By introducing the scattering albedo 𝜔 = 𝜎/𝛽 and choosing Δ𝑥𝐿𝑈 = 1, the 
extinction, scattering and absorption coefficients can be transferred into lattice units. 

 𝛽𝐿𝑈 =
𝛽Δ𝑥

Δ𝑥𝐿𝑈
 (15) 

 𝜎𝐿𝑈 = 𝜔𝛽𝐿𝑈 (16) 

 𝜅𝐿𝑈 = (1 − 𝜔)𝛽𝐿𝑈 (17) 
The fully discretized model equation is then given by 

 
𝐼𝜈,𝑠(𝑟 + 𝑐𝑠Δ𝑡, 𝑡 + Δ𝑡) − 𝐼𝜈,𝑠(𝑟, 𝑡)

= 𝜏 𝑐𝑠

Δ𝑡𝐿𝑈

Δ𝑥𝐿𝑈
 (− 𝐼𝜈,𝑠(𝑟, 𝑡) + 𝜔 ∑  𝑤𝑠′𝐼𝜈,𝑠′(𝑟, 𝑡)

𝑀

Φ𝐻𝐺𝑠,𝑠′
) (18) 

and the mean specific intensity at every node can be calculated by  

 𝐼𝜈(𝑟, 𝑡) =  ∑ 𝑤𝑠 𝐼𝜈,𝑠(𝑟, 𝑡)𝑠 . (19) 
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Numerical Examples 

 

In the following, the effects of spatial and angular discretization as well as the accuracy of the 
method shall be studied by comparison with Monte Carlo simulations as a reference. The 
lattice Boltzmann model was implemented in MATLAB R2014b. The algorithm follows the 
typical procedure in lattice Boltzmann simulations until a steady-state is reached. During the 
collision step, the right-hand side of Eq. (18) is calculated and added to the recent values 
𝐼𝜈,𝑠(𝑟, 𝑡). Then, boundary conditions at walls and light sources are applied. Finally, the prop-
agation of photons occurs in the streaming step. Steady-state is reached, if the condition 

 𝐼𝜈,𝑠(𝑟, 𝑡) − 𝐼𝜈,𝑠(𝑟, 𝑡 − Δ𝑡) ≤ 10−6 (20) 

is true for any direction at any location on the lattice. 
To study the effects of spatial and angular discretization, two examples are defined. In both 
cases, the domain is a cube with edge length of 1 𝑐𝑚, filled with an absorbing and scattering 
medium. The absorption and scattering coefficients were set to 0.5 𝑐𝑚−1 each. In case 1, one 
surface emits radiation isotopically, while in case 2 a collimated beam with radius 𝑟 = 0.1 𝑐𝑚 
enters the domain originating from the center of one surface. The boundary conditions at the 
light source were set to 𝐼𝜈,𝑠 = 𝑤𝑠𝐼0 in case 1 and in case 2 to 𝐼𝜈,𝑠 = 0 for all directions except 
from the one normal to the surface, which was set to 𝐼𝜈,1 = 𝐼0. All walls are considered to be 
fully transparent and the boundary condition was set to 𝐼𝜈,𝑠 = 0 for all directions. The same 
condition was applied to initialize the domain. The specific intensity was evaluated at the 
positions of nodes on the coarsest grid and discretization error was calculated according to 
Ferziger & Peric (2002). 
As it can be seen from Figure 3, the solution converges and a stable solution can be reached 
by keeping the optical depth below 𝜏 ≤ 0.025. At the same time, increasing the angular reso-
lution increases the accuracy of simulations in all cases. In particular, applying higher order 
velocity sets (D3Q50, D3Q98) increases the accuracy of simulations significantly. 
 

 
Figure 3: Discretization error with respect to optical depth and angular discretization. Solid lines indi-
cate isotropic scattering, dashed lines indicate anisotropic scattering (𝒈 = 𝟎. 𝟗). Left: case 1; Right: 
case 2 (see text for details). 

To study the accuracy of the method, the lattice Boltzmann prediction of case 2 is compared 
with Monte Carlo simulations. An open source Monte Carlo code for radiative transfer in bio-
logical tissue (Jaques et al. 2014) was used and medium properties were adapted to the giv-
en task. The Monte Carlo algorithm tracks photons along their path through the domain. At 
randomly chosen locations, the intensity of photons is evaluated and photons are scattered 
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according to the probability function as given by the integral of Eq. (8). If the intensity of a 
photon is below a threshold, it is not tracked anymore.  
Optical depth was set to 𝜏 = 0.0244 for the D3Q98 lattice Boltzmann method. For Monte Car-
lo simulations, 1.517E07 photons have been tracked and spatial discretization was set to 100 
voxels in each dimension. Absorption and scattering coefficients were set as before, the 
asymmetry factor was chosen as 𝑔 = 0.9. For comparability, intensity was normalized to irra-
diation per unit surface. 
Figure 4 shows intensity profiles in the xy-plane at 𝑧/𝑍0 = 0, which is half of the domain 
height. In the center of the collimated beam (𝑦/𝑌0 = 0), the prediction by the lattice Boltz-
mann method is in excellent agreement with Monte Carlo simulations. In regions illuminated 
only by scattered radiation, both methods provide similar results until a certain point where 
deviations suddenly increase. This is also confirmed by intensity profiles with respect to do-
main width, as shown in Figure 4. While at 𝑥/𝑋0 = 0.1 both methods are in good agreement, 
far off the light source the lattice Boltzmann method deviates from Monte Carlo simulations. 
 

 
Figure 4: Profiles of specific intensity predicted by lattice Boltzmann method and Monte Carlo method 
on the xy-plane at z/Z0 = 0. The center of the collimated beam located at y/Y0 =  0. Left: intensity with 
respect to traveled distance; Right: intensity with respect to domain width. 

A likely explanation for deviations between both methods is the Ray effect, which is a well-
known problem in Discrete Ordinate Methods (Chai et al. 1993). Ray effect is caused by the 
angular discretization of continuous waves and is usually addressed by increasing the angu-
lar resolution. Figure 5 shows a contour plot of the specific intensity field as predicted by lat-
tice Boltzmann method and Monte Carlo method, respectively. As already indicated, near the 
light source both methods are in good agreement, while with increasing distance to the light 
source the gradients of intensity adhere to discrete directions in the lattice Boltzmann simula-
tion. However, regardless of this inaccuracy, the lattice Boltzmann method can be applied to 
accurately predict the attenuation of a collimated beam in a microalgae biosuspension. 
 
Attenuation of Light Intensity in a Microalgae Biosuspension 

 
To experimentally validate the lattice Boltzmann model, the microalgae Chlamydomonas 

reinhardtii cc125 was cultivated in Basal Medium with soil extract under continuous illumina-
tion in Erlenmeyer flasks. After six days of cultivation, light attenuation in different dilutions of 
the biosuspension (1:5, 1:10, 1:20) was spectrophotometrically determined. Cell concentra-
tion of the undiluted culture was examined in 8-fold determination in a hemocytometer at 
5.464 1𝐸06 𝑚𝑙−1 and 95 % confidence interval of ±0.754 1𝐸06 𝑚𝑙−1. Pigment content of 
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Figure 5: Contour plot of predicted specific intensity on the xy-plane at z/Z0 = 0. Contour levels denote 
log Normalized Intensity. Top: prediction by Monte Carlo method; Bottom: prediction by lattice Boltz-
mann method. In the right plot, discrete directions in lattice Boltzmann are indicated by arrows. 

Chlorophyll a and b was determined according to Porra et al. (1989) and was used to calcu-
late the spectral absorption index of algae cells 𝑘, which is related to the imaginary part of the 
complex index of refraction by the relation 𝑛′′ = 𝑘𝜆/4𝜋. From literature, the real part of the 
complex index of refraction 𝑛′ = 1.36 (Lee et al. 2013) and the asymmetry factor 𝑔 = 0.96 
(Dauchet et al. 2015) were taken and assumed to be constant across the whole spectrum in 
a first approximation. The equivalent diameter of the spherical cells according to Dauchet et 
al. (2015) was calculated from flow particle imaging (Sysmec FPIA3000) and set to 8.465 𝜇𝑚. 
The refractive index of the growth medium was measured at 𝑛𝑚 = 1.333. Finally, the absorp-
tion and scattering coefficients were calculated by using the Anomalous Diffraction Approxi-
mation (van de Hulst 1957). 
Figure 6 compares the predicted attenuation of light with experimental measurements. It can 
be seen that the results are in good agreement for both wavelengths considered. The maxi-
mum absolute and relative errors are 0.0152 and 0.0164, respectively. To further increase 
the accuracy of simulations, optical properties of the biosuspension have to be precisely cal-
culated from cell composition. This applies particularly to the real part of the complex index of 
refraction of microalgae cells, since the attenuation of the collimated beam is basically 
caused by out-scattering and the prediction of the radiative field in the whole domain will be 
highly affected by the careful selection of optical properties. 

 
Figure 6: Comparison between predicted attenuation by the lattice Boltzmann method and experi-
mental measurements at different wavelengths. Left: absolute transmission; Right: relative error. 
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Conclusions 

 
In this paper, a lattice Boltzmann framework to predict radiative transport in biosuspensions 
was presented. To the best knowledge of the authors, this is the first application of a lattice 
Boltzmann framework for the simulation of radiative transport in three dimensions. The pre-
dicted fields of specific intensity were basically in good agreement with Monte Carlo simula-
tions. However, significant deviations between both methods can be noticed in regions illu-
minated only by scattered light. Basically, there are two possible reasons, both associated 
with the solution of the discretized scattering integral. The first potential cause is due to the 
Ray effect and an increase of accuracy could be possibly reached by the development of a 
correction term, which could be easily implemented into the lattice Boltzmann framework 
similar to in-scattering. A second potential cause of inaccuracy is the chosen quadrature 
scheme, which affects the discretization of the scattering phase function. By developing more 
accurate quadrature schemes, a precise calculation of discrete values will increase the accu-
racy of the lattice Boltzmann method. To detect the main cause of inaccuracy and weak-
nesses of the method, more test cases have to be validated, both numerically and experi-
mentally. However, the prediction of light attenuation in a microalgae biosuspension by the 
lattice Boltzmann method was already in good agreement to experimental measurements, 
with the restriction that the experimental evaluation of the full intensity field is still pending. In 
biosuspensions, it must be taken into account that the optical properties of cells are subject 
to uncertainty and moreover, may change dynamically during cultivation. For optimization of 
cultivation plants, this means that it is not sufficient to accurately predict radiative transfer 
alone. Moreover, the usage of dynamic models of algae metabolism, the prediction of radia-
tive properties from cell properties as well as the coupling to flow solvers is required. Due to 
their flexibility, lattice Boltzmann methods appear to be a promising tool to successfully solve 
this optimization task. 
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