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Abstract 

 
Whole-field velocity information – in contrast to single point-data – allows a substantially 
deeper insight into the investigated flow scenarios, since pattern information is contained 
beyond only statistical correlations. 

As a possible post-processing approach for such field information, the finite-time Lyapun-
ov exponent (FTLE) gains in popularity as it provides essential information, e.g. cause-effect 
relations of vortex formation and separation. It is calculated based on the Lagrangian flow 
properties measuring the separation rate of particles to visualize the transport of Lagrangian 
coherent structures (LCS). Thereby, flow separation, clear vortex boundaries and recircula-
tion zones are identified. Such structures in the flow are often not salient when investigating 
the Eulerian velocity field or even particle paths. Furthermore, the FTLE takes arbitrary time 
dependence of dynamical systems into account (see Shadden 2006). 

In order to research the influence on different flow characteristics, the spatial resolution of 
the underlying velocity grid and the mesh of seeded particles are varied through various two 
and three dimensional flow phenomena. The findings provide valuable insight into the re-
quired spatial resolution for the respective flow scenarios. This information in turn serves as 
mandatory boundary conditions for any experimental effort towards a successful measure-
ment-based FTLE calculation. 

 
Background and Objectives 

 
Most measuring technologies in fluid mechanics (e.g. particle image velocimetry (PIV), laser 
Doppler anemometry (LDA), hot wire anemometry) deliver Eulerian velocity data that need to 
be further processed. Lagrangian post-processing in terms of LCS extraction is only feasible 
for whole-field information, e.g. PIV or CFD data. Such processing provides information 
about the evolution of the flow and enables clear vortex boundary visualization.  

In order to receive the Lagrangian information from unsteady velocity fields, the ordinary 
differential equation 

�̇�(𝑥0, 𝑡) = 𝑣(𝑥(𝑥0, 𝑡), 𝑡) (1) 

has to be solved. Thereby, the Lagrangian particle positions 𝑥 are connected with the provid-
ed Eulerian flow field velocities 𝑣. In the Lagrangian description, the coordinate system 
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moves with the particles. Therefore, the calculation is more complex but it is considered ben-
eficial as the results reveal important information on location and dimensions of coherent flow 
structures, which might uncover cause-effect relations.  

Motivated by those advantages over Eulerian post-processing, the calculation of FTLE 
fields is often used as a basis for LCS extraction. LCS are material manifolds, which act as 
precise vortex boundaries (Grigoriev 2012). These are represented as material lines in 2D 
and material surfaces in 3D flows. Haller (2011) defines hyperbolic LCS as locally strongest 
repelling or attracting material surfaces.  

First proposed by Pierrehumbert (1991), the FTLE defines the changing distance of two 
initially neighboring particles over a particular integration time. An increasing distance be-
tween the particles, increases likewise the FTLE-value. Later, Haller and Yuan (2000, 2002) 
and Shadden et al. (2005) provided a profound mathematical description and a new ap-
proach to calculate fields, that nowadays are often called classical or flow-map FTLE-fields. 
A flow-map 𝜙𝑡0

𝑡 describes the displacement of a particle from time 𝑡0 to time 𝑡. Therefore, the 
stretching of the infinitesimal small perpetuation with arbitrary direction 𝛿�⃗�0 can be calculated 
using the right Cauchy-Green deformation tensor 

𝐶 = (∇𝜙𝑡0

𝑡 )
𝑇

∇𝜙𝑡0

𝑡 . (2) 

If the direction of 𝛿�⃗�0 is the same as the direction of the eigenvector of 𝐶 connected to the 

largest eigenvalue 𝜆 𝑚𝑎𝑥
(𝐶), the perpetuation is maximized. As such,  

𝜎𝑡0

𝑡 =
1

𝑡 − 𝑡0
𝑙𝑛√𝜆 𝑚𝑎𝑥

(𝐶) (3) 

is called the largest FTLE for forward integration describing how strong the flow is repelled in 
forward time. Thereby, Shadden et al. (2005) defined LCS as ridges of the FTLE-field, which 
on the one hand precisely define vortex boundaries, but also indicate flow separatrices. More 
background information and a stepwise mathematical description can be found in Slotosch et 
al. (2014). 

The FTLE calculation depends on multiple degrees of freedom, e.g. the resolution of the 
underlying flow field information that is limited by the capabilities of the applied measuring 
technique and the available storage size. If the discrete flow field is not fine enough to repre-
sent the real flow characteristics any FTLE results are not reliable. Thus, the first question 
addressed is how many data points, in terms of a velocity grid, are needed along a charac-
teristic length scale in order to capture the structures present at that scale. An answer to this 
question during the process of experiment design would help choosing the appropriate 
equipment needed as the measurement capacities limit the resulting data resolution. Equally 
important is the spatial resolution of the particle mesh.  

Equally distributed particles seeded with infinite grid size into the flow would guarantee the 
identification of all underlying structures resulting in a sharp visualization of the present LCS, 
while an insufficient number of particles might miss small scale structures. However, compu-
tational costs increase with increasing number of particles. Thus, the second question ad-
dressed is how dense has the particle mesh to be along a characteristic length scale in order 
to capture the structures present at that scale. Concerning again the design of an experi-
ment, a third question arises. Is it possible to improve the results provided by a low resolution 
of the flow data by a high resolution of the particle mesh such that well resolved structures 
can be extracted despite limited measurement capabilities? 

In the following, the influence of velocity grid resolution and particle mesh resolution will 
be examined based on the two dimensional double gyre flow (see Slotosch et al. 2014). This 
analytical flow field will then also serve as a basis for the development of two strategies, one 
concerning the velocity grid and one concerning the particle mesh, that allow the determina-
tion of the required resolution, respectively. Further, the designed strategies are tested on a 
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more physical two dimensional flow field, namely the Kármán vortex street, and a three di-
mensional test case comprising a piston vortex. 

 
Results and Discussion 

 
Influence of number of velocity points and number of particle points on the FTLE  
In order to study the influence of different resolutions with respect to the number of available 
velocity data and particles seeded into the flow, two new variables are introduced. For all 
calculations regarded in this work, the underlying velocity grid is assumed to be equidistant in 
all spatial directions. If the size of the structure that is to be resolved by FTLE calculations, 
e.g. a vortex, is known, a certain number of velocity points 𝑉𝑃 is distributed over a character-
istic length 𝐿𝑐ℎ𝑎𝑟 of the structure. As seen in Figure 1 a) and b), 𝑉𝑃 is equal to three as three 
velocity grid points are distributed over the characteristic length represented by the diameter 
of the vortex. In general, the particle mesh can be different from the velocity grid. Thus an 
independent number of particle points 𝑃𝑃 is defined that describes how many particles are 
seeded along the characteristic length. For the example of the particle mesh used in Figure 1 
b) and d), 𝑃𝑃 = 5 as five particles are seeded over 𝐿𝑐ℎ𝑎𝑟. 

The afore-mentioned artificial double gyre comprises two horizontally meandering and coun-
ter-rotating vortices, as introduced by Shadden et al. (2005) for FTLE studies. This periodi-
cally varying analytical flow field is expressed by the stream-function  

𝜓(𝑥, 𝑦, 𝑡) = 0.1 sin(𝜋𝑓(𝑥, 𝑡)) sin(𝜋𝑦), (4) 

which is evaluated over the domain [0,2] × [0,1] with 

𝑓(𝑥, 𝑡) = 0.25 sin(0.2𝜋𝑡) 𝑥2 + (1 − 0.5  sin(0.2𝜋𝑡)) 𝑥. (5) 

For more details on double gyre flow please refer to Shadden et al. (2005). The characteristic 
length scale of the double gyre is chosen to be equal to the size of the domain in 𝑦-direction 
as each of the two vortices compromises half of the evaluated domain. In the following, only 
the results of forward integration are considered as both, repelling and attracting LCS, look 
alike in such an oscillatory flow. Three example results for the FTLE calculation with an inte-
gration time of 1.5 perturbation periods are shown in Figure 2. The picture in the middle 
shows an FTLE field calculated based on the finest considered resolution, such that 

𝑃𝑃 = 𝑉𝑃 = 1001. Note that this resolution is defined as reference for the subsequent param-
eter studies, initially justified on the grounds of qualitative visual inspection. The red/yellow 
color denotes high FTLE values, which reveals a sharp and continuous LCS. As such, repul-
sion of particles normal to the LCS and a corresponding folding or stretching parallel to the 
LCS takes place, which is caused by the incompressibility of the fluid. Furthermore, no cross 

Fig. 1: Possible resolution of the FTLE grid for a vortical structure (green); a)       𝑉𝑃 = 3,        𝑃𝑃 = 3,  

           b)       𝑉𝑃 = 3,       𝑃𝑃 = 5, c)       𝑉𝑃 = 5,        𝑃𝑃 = 3, d)      𝑉𝑃 = 5,        𝑃𝑃 = 5.  

𝐿𝑐ℎ𝑎𝑟 

a)  b) c)  d) 
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flux should occur due to the separating character of LCS being material lines (see Shadden 
et al. 2005).  

Since 𝑃𝑃 and 𝑉𝑃 span a two dimensional parameter space, a subsequent systematic var-
iation of either degree of freedom is performed. For instance, either 𝑉𝑃 stays constant and 
𝑃𝑃 changes or vice versa. As expected, small variations of either parameter lead to no or 
negligible changes in the resulting FTLE field, which confirms the unnecessary high resolu-
tion of the reference case. Nonetheless, as the resolution becomes coarser clear differences 
can be seen. A coarse resolution of the particle mesh as shown on the left in Figure 2 results 
in a smearing of the FTLE value. No clear continuous ridge can be detected anymore, alt-
hough the positions of high FTLE value do not differ from the finest resolution. In contrast, a 
coarsening of the velocity grid (compare Figure 2 (right)) still yields a highly resolved sharp 
LCS but its shape and location are changed. These observations are also made if a coarser 
basis resolution is chosen. 

Consequently, the following three important conclusions can be drawn from this simple il-
lustrative comparison: 

1. The resolution of the particle mesh determines the sharpness of the FTLE result. 
2. The resolution of the velocity grid determines the shape of the FTLE ridges. 
3. A highly resolved particle mesh cannot compensate for a poorly resolved velocity 

grid. 
 
Relative Error 
As seen before, the resolution of available velocity data has an important impact on the posi-
tion of an LCS in the flow field. This is, because the FTLE can only capture the characteris-
tics transported by the measured data. Consequently, if a defined structure with length scale 
𝐿𝑐ℎ𝑎𝑟 is to be found by experimental measurements, it is important to choose an appropriate 
resolution.  

The solution of an FTLE calculation provides as many FTLE values as particles were 
seeded into the flow. As such, the number of FTLE values is independent of 𝑉𝑃 and a 
pointwise comparison of the FTLE results of varying velocity grid resolutions is possible. A 
relative discrepancy or error 휀 for a given FTLE field in comparison to the reference FTLE 
field can then be calculated for every particle 𝑖, expressed by the ratio of absolute difference 
to the sum of the FTLE values 

휀(𝑖) =
|𝜎𝑖| − |𝜎𝑖,𝑟𝑒𝑓|

𝜎𝑖 + 𝜎𝑖,𝑟𝑒𝑓
, with 𝑖 ∈ 𝑁. (6) 

To determine a global error estimate, the median 휀̂ of all obtained errors 휀(𝑖) is taken as the 
characteristic measure for comparison. A distribution of 휀 ̂ for variations of 𝑉𝑃 obtained for 
different resolutions of 𝑃𝑃 can be seen in Figure 3. Given that, for instance, an error of 3% is 
(arbitrarily) defined as the acceptance threshold, then 𝑉𝑃 ≥ 10 would yield the desired reso-
lution with good LCS positioning for the double gyre flow. 

reference FTLE field 
𝑃𝑃      ,  𝑉𝑃 = 𝑐𝑜𝑛𝑠𝑡 𝑃𝑃 = 𝑐𝑜𝑛𝑠𝑡,   𝑉𝑃      

Fig. 2: FTLE field calculated for the double gyre flow with varying number of particle mesh points 
and velocity grid points. 
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As further seen in Figure 3, the relative 
error increases with increasing 𝑃𝑃. This is 
caused by two reasons. First, the numeri-
cal noise floor in the small FTLE values 
increases. Second, as an increasing 𝑃𝑃 
sharpens the LCS, the spatial gradients of 
the FTLE become steeper. As such, the 
deviation in FTLE value of two particles 
increases faster with a higher resolution. 
These observations show, that if the LCS 
of two velocity fields are slightly shifted to 
each other, due to for example a small 
shift in camera position between two 
measurements, the method of relative 
error might lead to large discrepancies 

although the velocity resolution is sufficient. Hence, good confidence in the reproducibility of 
the data that is to be compared is mandatory for a successful application of the method. 

 
Sum criterion 
After the underlying velocity field is constructed, the resolution of the particle mesh 𝑃𝑃 has to 
be chosen in order to sharply capture the LCS. Because the number of seeded particles de-
termines the number of resultant FTLE values, two different resolutions cannot be immedi-
ately compared. Therefore, the FTLE field is summed up to a total FTLE value. Regarding 
the development of this sum in Figure 4 a), two major observations are made. First, with 
changing 𝑉𝑃 and constant 𝑃𝑃 (blue arrow), the sum converges quickly towards a constant, 
as the FTLE calculation converges towards the highest resolution. In the second case, where 
𝑉𝑃 is constant and 𝑃𝑃 changes (red arrow), the sum rises not only because the number of 
summed values rises with increasing 𝑃𝑃 but also the FTLE value itself increases with in-
creasing 𝑃𝑃. It is important to note, that the slope of the sum converges towards a straight 
line with inclination 2: 1 in loglog scale (compare Figure 4 b), which directly correlates with 
the particle refinement rate in two dimensional space.  

This observation yields the conclusion that the FTLE value has to converge towards a con-
stant with increasing 𝑃𝑃. It has been shown by Shadden et al. (2005), that this assumption is 
valid if the Euclidean norm of the Jacobian is restricted with a constant 𝑘 such that 

‖
d𝜙𝑡0

𝑡

d𝑥
‖ ≤ 𝑒𝑘|𝑡−𝑡0|  (7) 

Fig. 3: Relative error distribution for the double gyre 
flow with varying 𝑉𝑃 and 𝑃𝑃. 
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0 

Fig. 4: Sum of FTLE values for a) span of parameter space and b) varying 𝑃𝑃 at 𝑉𝑃 = 1001.  
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holds for all 𝑡. For this condition to be true, the underlying velocity field needs to be Lipschitz 
continuous (Verhulst 1996). If this condition is fulfilled, the sum of all FTLE values Θ can be 
expressed by  

Θ = ∑ 𝜎𝑖𝑖=1..𝑁 = �̅�𝑁, (8) 

where 𝑁 is the number of particles and �̅� the average FTLE value. For the double gyre flow, 
the sum of an ideal FTLE distribution is then expressed by 

Θ𝑖𝑑 = �̅�𝑁 = �̅� (2 𝑃𝑃2 − 𝑃𝑃). (9) 

Knowing the mean FTLE value of the finest resolution, the actual sum can now be compared 
with the theoretical sum. If, for instance, a discrepancy of 3% is allowed, than 𝑃𝑃 ≥ 52 holds 
for all tested 𝑉𝑃. This theoretical estimate is confirmed by the qualitative observations. How-
ever, in practice it seems most convenient to start with a coarse 𝑃𝑃 and do a step wise re-
finement until the mean value does not change ‘significantly’ anymore.  

 
Combination of the criteria 
Both, the relative error and the sum criterion are tested for all kinds of possible combinations 
of 𝑉𝑃 and 𝑃𝑃. Subsequently, a map is created that is composed of the maximum error for all 
possible combinations. Based on a tolerated deviation of 3 % for both criteria, the resultant 
error map for the forward integration of the double gyre flow can be divided into four regions, 
as seen in the top left of Figure 5. All results lying in the lower left corner are neither valid in 
terms of the sum criterion, nor the relative error, while the results in the upper right corner are 
denoted as valid by both criteria. As such, the combinations of 𝑃𝑃 and 𝑉𝑃 in the top right 
corner lead to sharp and well positioned LCS. In the other two regions only one out of the 
two criteria is considered as a valid data set in comparison to the reference resolution, be-
cause either the results are blurry or not well positioned. Consequently, the most efficient 
and meaningful result is the valid combination with smallest necessary resolution in 𝑉𝑃 and 
𝑃𝑃 as this is the combination with least experimental and computational effort. As the FTLE 
results for backward and forward integration are simply mirrored, the results of the presented 
criteria remain the same for backward integration (see Figure 5, bottom left). 
 
Kármán vortex street 
The Kármán vortex street is chosen as a test flow to vary the independency of the chosen 
characteristic length scale and to test the applicability of the criteria in an open domain, 
which means that the particles can leave the region of interest. The flow field is obtained 
from numerical simulations at 𝑅𝑒 = 150. Applying the presented criteria with a characteristic 
length equal to the cylinders diameter yields the error maps shown in the middle column of 
Figure 5. It can be seen, that the slopes of the relative error criterion (black line) differ slightly 
between forward and backward integration due to the different FTLE results, since attracting 
and repelling patterns differ in shape (cp. Gollub 2015). Nonetheless, the error maps result in 
similar predicted optimal resolutions for both integration directions. If a different characteristic 
length scale is chosen, the same qualitative error maps are obtained although the quantita-
tive values for 𝑃𝑃 and 𝑉𝑃 change. Because the resultant resolution suggestions lead to the 
same total number of velocity data points and particles in the whole domain, it can be con-
cluded that the criteria are independent of the chosen characteristic length scale. Moreover, 
these findings also show, that the criteria are not limited to closed fluid domains as long as 
the flow is Lipschitz continuous and Equation (7) is fulfilled. 
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Piston vortex 
As three dimensional test case, a numerically calculated piston vortex that travels through an 
open fluid domain is chosen. Here, the FTLE results of forward and backward integration 
differ significantly from each other (see Kaiser 2014). This example also shows significant 
differences in the resultant error maps (cp. Figure 5, right column). First, it should be noted 
that the sum criterion approaches a 3: 1 slope with increasing 𝑃𝑃 resolution, which matches 
the refinement rate in three dimensional space. Note that in this case the error maps indicate 
s tolerance level for the sum criterion of 5%. This decision is made because little refinement 
in three dimensional space leads to much higher computational effort and it was found, that 
for 𝑃𝑃 ≥ 60 and constant 𝑉𝑃, the change in �̅� was below 3%. Additionally, qualitative com-
parison supports this decision. Nonetheless, a crossing of the two criteria boundaries is only 
found for forward integration. Thus, for backward integration no clear combination of PP and 
VP that results in accurate results with clear least computational effort can be found at this 
stage. Instead, the examiner has to choose an appropriate set within the valid domain that 
matches with the available experimental and computational resources. 

 
Conclusions and Future Work 

 
Comparing the quantitative results with qualitative observations and an allowed deviation of 
3%, both tested criteria show good agreement in all three test cases. It is important, that for 
the sum criterion to be applicable, the separation rate of particles, thus the corresponding 
maximum possible FTLE value has to be limited. In a closed domain such as the double gyre 
flow this condition is automatically satisfied, while in open flow domains the chosen extrapo-
lation methods dominate the estimated separation rate in case a particle leaves the domain. 
As such, the methods used have to be Lipschitz continuous. If this condition is satisfied, the 
sum criterion can be used to determine the number of particles necessary for an FTLE calcu-
lation that leads to well resolved LCS. The observations further propose that there is no need 
to compare with a reference FTLE field of fine resolution, as the inclination of FTLE sum de-
pends directly on the number of particles in the domain. As such, it is sufficient to evaluate 
the deviation of the FTLE sum with respect to the expected slope. In other words, a compari-
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Fig. 5: Error maps for presented test cases based on the sum criterion (white) 
and the relative error criterion (black). 
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son of the mean FTLE value in terms of a particle mesh independence study can be carried 
out.  
The relative error criterion determines whether the resultant LCS is in the correct position. 
Unfortunately, it might fail, if some particles are positioned right on an FTLE ridge that moves 
minimal with the next refinement level. In such cases, the relative error will locally rise signifi-
cantly. Taking the median as global measurement, this disadvantage is compensated to a 
certain degree. Note, however, that particularly for high 𝑃𝑃 the sum of small ridge displace-
ment might cumulate to a large deviation if the median is affected.  

The resolutions for both, velocity grid and particle mesh, based on a characteristic length 
were found to be different for the three test cases. As such, it is not possible to make a gen-
eral statement on velocity data points or particles needed through the characteristic scale of 
the flow field. One reason might be the additional dependence of all the results on time step-
ping and integration time that adds an additional (temporal) degree of freedom to the charac-
teristic length scale needed to fully describe the unsteady flow scenarios. Despite this draw-
back, it is possible to find the solution necessary to obtain sharp and well positioned LCS 
based on FTLE calculation for all tested cases.  

In future it is therefore intended to further refine the relative error criterion based on a 
neighbor search to compensate the disadvantages. Additionally, both criteria have to be 
tested on their dependence of time scaling, which also leads to the need of a third criterion 
determining the necessary temporal resolution of the FTLE calculation.  
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