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Abstract 
 
Hard disk drives (HDDs) are widely used as a major device for data storage. Besides the 
higher areal density and lower power consumption demanded in the next-generation HDDs, 
their reliability still remains an important issue to secure the data. The reliability is hindered 
by the crash of the magnetic head against the disk surface. However, exact mechanism of 
the crash has not been understood and hence there is no versatile solution to prevent it. We 
investigate the complex flow behavior of the flow inside a HDD in order to clarify the mecha-
nism responsible for inducing the crash. We created a simplified HDD model equipped with a 
read-and-write assembly (RWA) and a shroud opening. A scaled experimental model was 
built with all the parts made of a transparent material. A refractive index matching was ap-
plied to the working fluid so that the whole parts became optically transparent while they 
maintain their mechanical functions. A series of flow visualizations were carried out at differ-
ent conditions of Reynolds number, the insertion angle of the RWA and the observation 
planes. We also performed a measurement of the planer velocity field using a particle image 
velocimetry (PIV). We report on the global behavior of the flow based on the flow visualiza-
tion and the PIV measurement. 
 
1. Introduction 
 
Hard disk drives (HDDs) have been widely used as data storage device. A general HDD 
consists of a stack of rotating disks with a revolution ranging from 5400 rpm to 7200 rpm and 
a read-and-write assembly (RWA). A magnetic head equipped at the top of the RWA reads 
and writes data on the disk surface. The head fly over the disk surface due to the lift force 
induced by the disk revolution. The fly height is precisely controlled by servo mechanism for 
less than a few nanometers. The development of HDDs continues toward achieving higher 
areal density with lower energy consumption. Their reliability remains an important issue to 
secure the data stored in the HDDs. For the rare occasion, the magnetic head collides 
against the disk surface. The crash is a fatal problem that results in the loss of data. So far, 
there are two possible scenarios which are supposed to be responsible for the crash. One is 
the vibration induced by the complex air flow [1]. The vibration amplitude of the disks was 
reported to decrease when the tip clearance between the disk to the shroud wall became 
narrower [2]. Another is the collision of a particle against the magnetic head. A particle wan-
dering in the drive may induce an impact when it collides against the head. However, the 
exact mechanism of the crash has not been understood. In any case, the internal flow must 
play a key role in the crash mechanism. Hence, investigation of the complex flow behavior is 
vital in order to clarify the crash mechanism and to prevent it. 
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On the flow inside HDDs, many investigations have been done both in experiments and nu-
merical simulations. They provided several common findings on the flow between the disks. 
In a plane parallel to the disks, the inner region exhibits solid body rotation while large scale 
vortices are formed in the outer region [3]. The inner region forms polygonal shaped structure 
and the shape changes depending on the Reynolds number and the aspect ratio of the disk-
to-disk spacing to the disk radius. On the other hand, secondary flow structure is observed in 
the cross-sectional plane (vertical to the disks). The complex flow was classified into three 
different regimes [5]. However, most of the works have been done using excessively simpli-
fied models, typically a stack of rotating disks mounted in an axisymmetric enclosure without 
an RWA. It is questionable to apply the findings from such a simple axisymmetric geometry 
to understand the flow behaviors in real HDDs with a non-axisymmetric geometry and an 
RWA inserted between the disks. More recently, velocity measurements in the narrow spac-
es were attempted using a model with a non-axisymmetric enclosure with an RWA [6], but 
the stagnation flow in the shroud opening was not properly reproduced. Numerical simula-
tions of HDD flows have been performed using the design geometry of a specific HDD [7]. In 
spite of the spread of simulating tools, numerical simulation of the flow is still challenging 
because of the need to resolve a wide range of the scales existing in HDDs. Besides, it is 
also difficult to obtain sufficient amount of the statistics in numerical simulations. 
 
We constructed a new HDD model in order to understand the common features of the flow. 
The model contains a pair of rotating disks with a simulated RWA placed in a non-
axisymmetric enclosure. It has a still simplified geometry but was designed to represent 
common geometric features of a HDD. Our intension is not to stick on a specific geometry 
design of a particular product but to understand the flow physics common to HDDs in general. 
We performed a series of flow visualization experiments based on the proposed model. In 
the visualization, a refractive index matching (RIM) was applied to the scaled experimental 
model so that the whole area of the model became optically transparent with the functionality 
of the parts remained. Three-dimensional flow behavior has been observed and regions with 
strong shear were found in the visualization. However, the study was limited to qualitative 
examination and quantitative evaluation of the flow filed was expected. 
 
In the present study, we extended the qualitative visualization into quantitative measurement. 
We used the scaled experimental model under a RIM condition. We built a measurement 
system of two-dimensional planar particle image velocimetry (PIV). Measurements were 
made on the velocity fields in the planes parallel to the disks. In the following, we report on 
the experiment and some early results obtained in the PIV measurement. We focus on the 
global behavior of the flow. 
 
2. Flow Analogy and Scaling 
 
We chose Reynolds number as the primary similarity parameter among others since we fo-
cus on the flow dynamics of a HDD. Besides, it is impossible to keep the similarities of flow 
and other phenomena. The disk Reynolds number is defined as 
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where ρ is the fluid density, R1 the hub radius, R2 the disk radius, Ω the disk angular velocity 
and μ the viscosity. In addition to the dimensions parallel to the disks, those perpendicular to 
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the disks also give influences the flow behavior. The parameters were non-dimensionalized 
with the tangential velocity at the outer edge of the disk and the inter-disk spacing 
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where H is the inter-disk spacing (i.e., the disk-to-disk distance), z the axial coordinate (the 
datum level on the middle plane between the disks), r radial direction and v the flow velocity. 
 
3. HDD Model 
 
The HDD model consisted of a pair of disks and a stack of simplified RWAs mounted in a 
non-axisymmetric enclosure as shown in Fig. 1 (a). A large shroud opening was equipped so 
that the flow stagnation got properly reproduced in the region (see the bottom right of Fig. 1 
(a)). The experimental model was a 2:1 scale of a 3.5 inch HDD for desk top computers. This 
scale was determined in order to match the Reynolds number in Eq;(1) in the experiment. 
The RWA is alternately inserted into the spaces between the top-to-disk, disk-to-disk and 
disk-to-bottom of a non-axisymmetric enclosure as depicted in Fig. 2. The disks had a radius 
of 100 mm, a thickness of 3 mm and the inter-disk space is 6 mm. The RWA had a thickness 
of 3 mm with the disk being spaced 1.5 mm apart from the RWA. The thickness values of 
these components were intentionally made more than twice those of the scaled value by tak-
ing into account of their stiffness. Otherwise, the disks would bend inward by the low pres-
sure conditions at fast rotations of the disks [6]. With the present thickness values, we have 
not observed any bend of the components in the present experiment. The RWA was placed 
in a way that the insertion angle was set at different angles as illustrated in Fig. 3. The inser-
tion angles correspond to the head reading/writing data at the different radial tracks on the 
disks. The experimental model was made of a transparent material, i.e., poly-methyl methac-
rylate (PMMA). The parts were all made of a sane PMMA material including the enclosure, 
disks, hubs, RWAs and rotating shaft, except for the bearing and liquid seal. 
 
In the present study, we aimed to have an unobstructed optical view in the whole area of the 
flow in the model. In order to realize such a view, a RIM technique is known [8]. A RIM tech-
nique minimizes shadows and glare points occurred at the boundaries of solid and fluid. The 
working fluid was carefully chosen for realizing a RIM in the experiment. The refractive index 
of the working fluid was adjusted to that of the solid parts made of PMMA (refractive index: 
1.49). The ternary solution consists of ammonium thiocyanate, glycerin and water. As a re-
sult, all the parts including the fluid and solid inside whole the enclosure became optically 
transparent while their mechanical functions were maintained. The effect of the index match-
ing was significant as shown in Fig. 1 (b, c). The solution was found to be stable for over 
weeks once it was created. 
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4. Experimental Apparatus and Conditions 
 
4.1 Apparatus 
 
The PIV system consisted of a double-pulsed laser, optics forming the light sheet, a function 
generator, a pulse-delay generator, a CCD camera (1392×1040 pixels, 14 bit, mono-chrome, 
double shutter) and a computer as illustrated in Fig. 4. Ion exchange resin (mean diameter: 
100 µm, density: 1.01 g/cm3) was seeded as tracer particles in the flow. In a preliminary con-
sideration, we confirmed the particle tractability to the flow in terms of buoyancy, centrifugal 
and lift forces. The laser (Nd:YAG, 532 nm, 20 mJ/pulse, pulse width: 5~9 ns) consisted of 
two independent heads. The timing control of the system was realized with a function gen-
erator and a pulse-delay generator connected to each of the laser drivers and the camera. 
The laser beams were guided through the optics and converted into light sheets. The HDD 
model was illuminated by the light sheet from the side. The light sheet was about 1.5 mm 
thick. For calculating the velocity vectors from the image pairs, cross-correlation algorithm 
was applied. An open-source software PIVlab was utilized for the analysis. 
 

 

Fig. 1: The HDD model and typical images at the experiment with/without refractive index matching, 
(a) picture of the HDD model, (b) image with non- index matched fluid (water), (c) with the index 
matched fluid (aqueous solution of ammonium thiocyanate and glycerin). 

 

 
Fig. 2: Cross-sectional view of the design of 
the present HDD model. 

Fig. 3: The angle definition of the RWA insertion 
to the flow (0°, 20°, 35°, 50°). 

 

(a) (b) (c) 
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Fig. 4: Overview of the experimental setup at the PIV measurement, consisting of a double-pulsed 
laser, optics, a function generator, a pulse-delay generator, a CCD camera and a computer. 

 
 
4.2 Measurement conditions 
 
PIV measurements were performed at four insertion angles (0°, 20°, 35°, 50°) at two planes 
(z*= 0 and 0.42) shown in Fig. 3 and Fig. 5. The angular velocity was set to 296 rpm (the disk 
Reynolds number: 4.8×104), which corresponded to 5400 rpm in a real 3.5 inch HDD. The 
size of the interrogation window was set to 64×64 pixels with 50% overlap. The resulting spa-
tial resolution became about 200×200 μm2. The interval between image pairs was set to 200 
ms taking into account of the one-quarter rule of in-plane PIV analysis [4], which correspond-
ed to approximately 1 image pair acquisition per revolution. This ensures the statistical inde-
pendence of the image pairs. 
 
 

Fig. 5: Definition of the illumination planes of the laser sheet. 
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5. Results and Discussions 
 
5.1 Rotating flow in the disk area 
 
Velocity magnitude at the disk middle plane (z*=0) are shown in Fig. 6. Each of these images 
is the average of 200 images, respectively. Laser sheet was irradiated from the left side in 
the images. In the disk area, flow velocity decreases as the RWA inserted deeply into the 
inner region. The maximum velocity decreased about 0.6 m/s at the insertion angles from 0° 
and 50°. At the angles of 0°and 20°, there are distinct annular region of high velocities seen 
between the hub and the shroud. Fig. 7 shows the velocity profiles normalized by Eq.(2) 
along the line OD located in the opposite of the shroud opening (see Fig. 7 (a) for the line). 
The normalized velocity profiles for the four angles exhibit similar trend as shown in Fig. 7 (b). 
In the inner region, the normalized velocities have constant values, indicating the solid-body 
rotation. The velocities become slightly larger than the local tangential velocities on the disk. 
Toward the outer region, the velocities decreases start to decrease and finally down to 40 to 
65 percent of the local tangential velocities on the disk. The velocities have a very similar 
behavior for the cases of 0°and 20°. In the same figure, we show the result of Schuler et al. 
(1990), who measured the velocities using a laser Doppler anemometry (LDA) [5]. The nor-
malized velocity profiles obtained in the present study are consistent to their result despite 
their results were obtained by using an axisymmetric enclosure without an RWA. This similar-
ity is attributed to the fact that the blockages by the RWA in the cases of 0°and 20° were 
similar to the flow geometry in an axisymmetric enclosure without an RWA. Beyond at a cer-
tain angle, the obstruction of the flow became larger and the resulting flow structure starts to 
be influenced by the non-axisymmetric geometry. In the cases of 35°and 50°, the annular 
shaped high velocity regions seen in the 0°and 20° disappear. Instead, the high velocity re-
gions exist locally near the RWA not extended to circulate. There are two regions of high 
velocities in the cases of 35°and 50°. The primary one is seen in the inner side of the RWA. It 
was created by the blocking and narrowing effects of the flow path by the RWA. The flow 
behaves locally like a jet from a nozzle in the region. The secondary regions observed be-
hind the RWA are less discernible. The region seems to be caused by some part of the flow 
which circumvented the RWA. It merges with the primary region just in the downstream of 
the RWA. Some small eddies shed in the region were reported in the prior research with a 
flow visualization, but those eddies have not captured by the PIV measurement probably 
caused by the low resolution using the interrogation-window size of 64×64 pixels.  
 

 
 
 
 

 
Fig. 6: Velocity magnitude at the middle plane including the arm (z*=0). 
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Fig. 7: The polyline along which velocity data was extracted (the left image). The graph showing 
relationship between non-dimensionalized velocity and radius (the right image). The line signifies 0°, 
20°, 35° and 50° in order from the top. 

 
Fig. 8 shows vorticity fields in z*=0 plane. Vorticity means the degree of flow to rotate, de-
scribed by 
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in a two-dimensional flow. In the color contour, the red (the positive) represents the clockwise 
curl and the blue (the negative) represents the counter-clockwise curl. The vorticity became 
positively large in the interface region between the disk and the shroud opening area regard-
less of the RWA angles. This positively large vorticity is caused by the high velocities in the 
disk area (see Fig. 6 and the above discussion) interfaces the small velocities in the shroud 
opening area. The substantial velocity difference between the two areas was expected from 
the prior flow visualization and the fluid with small velocities in the shroud opening region 
entrains into the disk area. Further investigation on the region is expected to examine the 
strong shear and its influences in the downstream. Fig. 9 shows vorticity fields at the plane 
between the disk and the RWA (z*= 0.42). The vorticities in this plane exhibit similar tenden-
cy to the disk middle plane for all the four RWA angles. However, the vorticity was found to 
become negatively large at the trailing edge near the hole equipped with the RWA. On the 
other hand, vorticity was positively large at the leading edge where the flow hit against the 
RWA. 
 
5.2 Stagnation flow in the shroud opening 
 
We focus on the shroud opening area where the flow is expected to be almost stagnates. Fig. 
10 shows the resulting velocity magnitudes in the upper row and vorticity fields in the lower 
row. In the area, the incoming flow enters into the large opening area similar to the flow with 
a backward facing step. The flow separates at the rear edge of the block and forms a large 
clockwise recirculation. The incoming fluid flowing against the wall bifurcates into upper and 
lower directions. The upper flow gradually flows back into the disk area while the lower flow 
flows along the wall to create the flow recirculation. The flow was almost stagnant at the case 
of 0°while it exhibit strong recirculation region at the case of 50°. As the RWA angle becomes 
deeper, the incoming flow enters from the pivotal region of the RWA with faster velocities and 

Schuler et al (1990). 0° 

20° 
30° 

50° 

Hub edge Disk edge 
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they become more diffusive. The flow rate of the incoming flow is increased by the amount of 
area blocked by the insertion of the RWA. Concerning the vorticities, their magnitude in-
creases as the increase of the RWA insertion angle. Especially, they become prominent at 
the angles of 35 and 50°. The negative vorticity originates from the flow winds around the pivot after 
passing along the curved gap between the pivot and the shroud. Regions of positive vorticity are ob-
served near the disk edge as discussed in the section 5.1. The positively large vorticity from the rear 
edge of the block corresponds to the recirculating flow in the bottom part of the shroud opening area 
as discussed above. Besides, pairs of positive and negative vorticity pairs are seen in the upper side 
of the shroud opening area. This vorticity behavior with the counter rotating vorticity pairs may have 
arisen from the Kármán vortex streets shed from the pivotal shaft for fixing the RWA in the upstream. 
Further investigation is required on this point. 
 
6. Summary 
 
The complex flow was investigated on the internal flow of the HDD model. The model was 
equipped with a RWA and a shroud opening to investigate the influence of the RWA insertion 
and the stagnating flow in the shroud opening. We focused on the global flow of the whole 
area inside the scaled HDD model by applying a RIM to the working fluid. Quantitative evalu-
ation of the velocity field was performed based on the PIV analysis. The velocity magnitudes 
and the vorticity fields were examined at the two observation planes with four RWA angles. 
In the disk area. The rotating flow in the disk area was disturbed by the RWA. The blockage 
by the RWA induces high velocity regions and the influence of the RWA increases with the 
insertion angle. In the shroud opening area, the incoming flow becomes stagnant. A part of 
the flow recirculates in the bottom area and the other part gradually flows back and merges 
 

 
Fig. 9: Vorticity fields at the plane between the disk and the arm (z*= 0.42) 

 

 
Fig. 8: Vorticity fields at the middle plane including the arm (z*=0). 
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Fig. 10: Velocity magnitude (upper row) and vorticity fields (lower row) in the shroud opening area at 
the plane between the disk and the arm (z*= 0.42). 

 
into the fast flow in the disk region. The recirculating flow formed in the area becomes promi-
nent as the arm insertion angle increase. Resolution, reproducibility and statistical reliability 
need to be investigated. Further measurement is conducted for the evaluation of turbulence 
statistics including Reynolds shear stress components and turbulent kinetic energy. 
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