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Abstract 

 

The behavior of foams at rest, but particularly during fluid mechanical transport is poorly 
understood yet. However, foams have great importance in a wide spectrum of technical 
applications such as light weight metal components and elements for reducing vibrations, 
heat transmission and acoustic waves. This contribution presents first experimental and 
theoretical results of a project that deals with protein foams as they have a crucial 
importance in food production. Their sensory properties (e.g. lighter effects, lower density, 
etc.) lead to better consumer demands. On the other hand, foam can undesirably impair 
manufacturing processes. Both effects are related to the stability of the foam. The preliminary 
experimental and mathematical results obtained yet concern mostly the rheological behavior 
of protein foam on various mesoscales. Foam characterization is based on model systems of 
milk proteins (Casein-groups and β-Lactoglobulin), which are experimentally scanned with 
some optical methods with microscope connected to the high speed camera. A literary model 
for incompressible and compressible viscoelastic fluids leads to a non-linear ODE, which is 
solved numerically by the classical Runge-Kutta method. Furthermore, a theoretical analysis 
on non-dissipative elongational flow is performed. 
 
Introduction 
 

The behavior and stability of protein foams at rest and in convective transport depends on a 
large number of parameters. Amongst them the kinetics of the surfactants including their 
concurrent population dynamics, the phase separation due to gravity, the deformation and 
even disintegration of the bubbly structure due to inertia and flow resistance forces, the 
sporadic decay and the rheological changes must be taken into consideration. With respect 
to rheology of foams, literature focusses mainly on macroscopic phenomena, mechanisms 
and structures. To these belong for instance the elastic behavior at small deformations and 
the pseudoplastic flow, where the bubble properties such as size and composition of the 
interfaces play a significant role. In general, primary foams are very transient. By mechanical 
forces, it is often succeeded to obtain a more stable secondary foam structure. The bubble 
sizes vary through a range between 1 and 10-6 cm. On the microscopic scale, there arise 
modifications in the surface coverage, which refer to surface-active substances such as the 
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proteins in focus here. Microscopic effects were also clarified by relatively new measurement 
methods to investigate the stability of Casein foams. In this respect, the main flow motions, 
but also the secondary flow, have an impact on flow deformation. Therefore, mesoscale 
models are of interest. Relating to this, the literature shows a large gap. 
In addition to the microscopic investigations, an adequate fluid model on a macroscopic level 
is introduced. In Aksel 1990, 1995, a compressible Rivlin-Ericksen liquid of second order is 
presented as model of continuum mechanics for characterizing viscoelastic liquids that 
contain air bubbles. The liquid of second order is an approximation of the so-called simple 
fluid and is only valid for slowly changing deformation processes. There are various efforts to 
derive numerically the material functions of this model. 
 
Experimental Procedure 
 
In order to obtain the optimum concentration of proteins, which the foam makes more stable, 
different concentrations of proteins have been examined. The investigations have been done 
with watery solutions of Natrium Casein as well as Calcium Casein. Because there is no 
specific value for the stable protein concentration, various foams with different concentrations 
were built to compare the lifespans, the foam formations and the optimum value for stable 
foam. The surface-active substances adsorb on the phase interfaces and stabilize the 
surface in different ways. Gravity causes the water molecule to rise downwards (drainage 
effect). If there is a lack of water molecules to form a stable surface, the bubble bursts and 
the foam collapses. Due to this effect, foam with smaller bubbles is more stable than with 
bigger bubbles because their surfaces formed between the surface-active substances are 
smaller. A rheometer is used to determine the permitted shear stress range with the 
maximum foam stability. With an oscillatory measurement, the storage modulus and loss 
modulus can be found. It means that a frequency range and an amplitude range can be set 
while the stability of the foam is tested. Last but not least, a microscope armed with a digital 
ultra-high-speed camera (up to 106 frames/second) is employed for observing the 
spontaneous decay of foam and the corresponding changes of the foam structure in 
connection to the transport of mass and momentum in foam systems.   
 
Theoretical background 

 

(i) Modeling on the microscopic scale 

 

As mentioned in the introduction, a series of mathematical approaches are available to 
model foams, see Brennen 1995, Plesset et al 1977, Prosperetti 1982, just to name a few 
examples. The starting point in Aksel 1990 is one single gas-filled bubble in a liquid phase. In 
a first step, in particular for fine foams with bubble diameters less than 1 mm, it is reasonable 
to assume spherical symmetry of the bubble, see Clift et al 2005, so that the continuity 
equation is easier to treat. The same holds for the flow region. Consequently, there is no 
dependence on angular coordinates and thus it only remains the radial component of the 
equation of motion. Furthermore, incompressibility of the liquid, an isotropic pressure and 
isothermal conditions are supposed. Mass transport between the phases and volume forces 
are neglected. In view of the protein foams in focus the dispersion medium shows a high 
viscosity. The literary model, see Aksel 1990, serves as orientation for the following 
theoretical analyses, since it particularly deals with slow and slowly varying deformation 
processes in flows of non-Newtonian liquids. Relating to this, the author suggests an 
asymptotic approximation of second order, see Böhme 2000, Giesekus 1994, Spurk et al 
2006, for a simple liquid under slow flow motions, that means the stress tensor is in the 
incompressible case 
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with dynamic viscosity 
0 , non-Newtonian material constants 

0  and 
0 , kinematic tensors 

21, AA   (Rivlin-Ericksen tensors) and pressure p . In addition, the impact of compressibility is 
involved by means of an adapted version of (1), which will be discussed later in this 
contribution. Beside the microscopic level the author also considers the macroscopic level 
why this work has a big potential for the modeling on the different mesoscales:  

(1) Protein - Foam lamella.     (2) Foam lamella - Bubble.     (3) Bubble - Foam-like food. 

Inserting an analytical expression for the velocity field, derived by integration of the mass 
balance, in the reduced momentum equation, which includes all of the above simplifications, 
and using the asymptotic approximation (1), one arrives at a variant of the well-known 
Rayleigh-Plesset equation (RPE), see Brennen 1995, Plesset et al 1977, Prosperetti 1982, in 
non-dimensional form   
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0
,,,,, GpABM   represent dimensionless quantities and the time-

dependent function )(tpp    the so-called far-field pressure. These parameters contain 

000 ,,   from (1) as well as density 
0  and pressure 0p  of the liquid, the surface tension   

of the bubble, its radius at rest 
0a , that means at initial time 0t , and a characteristic 

excitation time  . The non-linear terms in (2) require a numerical solution for the radius 
)(taa   of the gas bubble, which can be computed by a one-step method. In this respect, 

among several possibilities, the classical Runge-Kutta method with adaptive stepsize control 
offers good results regarding calculation accuracy under moderate computational effort. This 
procedure was implemented with the computer algebra system Maple applied on the original 
equation (2) and two kinds of linearisations of (2), which are given by 
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(ii) Modeling on a macroscopic level 

 

The stress tensor Tc of a compressible Rivlin-Ericksen liquid of second order with pressure 
function pc and viscosity function μc may be written in the form, see Aksel 1990, 1995: 

Tc = pc(ρ, )∙I + μc(ρ, )∙A1 + α(ρ, )∙A 2

1  + β(ρ, )∙A2 

pc(ρ, ) = -p(ρ) + 
2

1
∙λ(ρ, )∙tr(A1) + ξ(ρ, )∙(tr(A1))2 + ζ(ρ, )∙tr(A 2

1 ) + δ(ρ, )∙tr(A2)               (5) 
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μc(ρ, ) = μ(ρ, ) + γ(ρ, )∙tr(A1). 

Here, A1 and A2 are the first and second Rivlin-Ericksen tensor. The Rivlin-Ericksen tensors 
An are defined recursively by the formula 
 

A1 = L + LT = 2∙D                                                          (6) 

An+1 = 
Dt

DAn + LT∙An + An∙L     (n   1)                                            (7) 

where L = (grad v


) and D = 
2

1
∙((gradv


) + (gradv


)T)  denote the velocity gradient tensor and 

the deformation velocity tensor, respectively, and v


 is the velocity. The stress tensor Tc is 
thus a function of the Rivlin-Ericksen tensors A1 and A2 and the corresponding invariants. 
The coefficients μ and λ are the dynamic shear viscosity and volume viscosity. These 
coefficients are material properties and in general will be functions of the local density ρ and 
flow rate (e. g. elongational rate  , see equations  (5) and (8)). The other coefficients α, β, ζ, 
δ, ξ and γ denote the non-Newtonian material functions of second order, which also depend 
on the local density ρ and flow rate. The variables to be calculated, namely velocity v


, 

undetermined pressure parameter p and density ρ, depend on space x


 and time t. 

The aim is to express the viscosity terms of the model presented above by parameters which 
can be measured by special rheometers. For instance, cone-plate rheometers or plate-plate 
rheometers are used for measuring the dynamic shear viscosity and the normal stress 
functions of a liquid whereas elongational rheometers provide an approximation of the 
elongational viscosity. The viscosity terms which cannot be measured currently may be 
approximated by material relations developed in the theory, among other things in Aksel 
1990. There, three material relations are derived for approximating the viscosity terms of a 
liquid of second order. These material relations, however, only hold for homogeneous 
elongational flows of viscoelastic liquids with air bubbles. They are derived as follows:  

The author calculates the mean deformation work for the incompressible fluid model with air 
bubbles on a microscopic level and the local deformation work for the corresponding 
compressible fluid model on a macroscopic level. Furthermore, it is assumed that the 
densities ρ(t) of both models are equal at all times t. The incompressible fluid has constant 

density, denoted by ρ0, and constant shear viscosity, denoted by μ0. By comparing the two 
deformation works the author obtains relations for the material functions of the compressible 
fluid model. They can be expressed by the known data of the incompressible fluid model with 
air bubbles. The first relation, which is only quoted here, is given by 

μD(ρ, ) = 
3

4
∙μ0∙

0

2 )(



 t
∙

0)(

1

 



t
 = λ(ρ, ) + 

3

2
∙μ(ρ, ) .                              (8) 

Here, the combination of μ and λ represents the so-called pressure viscosity μD. 
 
Results 

 

(i) First experimental findings 

 

According to the experimental results and optical observations the optimum concentration of 
the Natrium Casein and Calcium Casein with respect to stability is 1.7 g/50 ml water. As no 
significant difference in this optimum concentration has been found, the present contribution 
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focusses on the rheological behavior as well as the decay of Natrium Casein foams. With 
respect to the rheological behavior it is well accepted in literature, that high elastic behavior 
acts preservative. In contrast to this high viscous behavior indicates deterioration of foam. 

Figure 1 shows the loss and 
storage modulus of Natrium 
Casein for the applied shear 
stress. For ensuring correct 
interpretation of the data 
presented in this figure it must 
be stated first that foams are 
expected to exhibit a yield 
stress. Below the yield value 
the foams behave as an 
elastic solid. However, as the 
yield stress takes on relatively 
small values no attempt has 

been performed to resolve them yet. Nevertheless, for small shear stress values the 
rheological foam behavior is dominated by elastic effects as expressed by the relative high 
value of the storage modulus. In contrast to this, from a shear stress of τ = 0.4 Pa the loss 
modulus is higher than the storage modulus which indicates a change to a viscous 

dominated structure of foam. With increasing stress both the 
curves approach to each other asymptotically which means 
that foam is totally disintegrated. 

As the intersection point of the storage and loss modulus lies 
at relatively small values it can be concluded that Natrium 
Casein foams are highly sensitive against mechanical 
stresses. This is true even for the optimum concentration. 
Thus, the sporadic decay of Natrium Casein foams may be 
expected to occur rapidly. Figure 2 illustrates a microscopic 
observation of the structure of a Natrium Casein foam with the 
concentration of 2 g/50 ml water. Although the concentration 

of Natrium Casein is slightly higher than optimum value, the phase boundaries between 
individual bubbles are obvious. The bubbles are relatively large possibly due to the increased 
protein concentration. In order to investigate the foam decay, the generated foam is observed 

Fig. 2.  Natrium Casein foam 
just after generation. 

 
Fig. 3. Natrium Casein foam decay over a period of 50 minutes. Due to the small stability of Natrium 
Casein, disintegration of the foams cells occurs to a large extend in the first 10 minutes.  

 
Fig. 1. Rheological investigation for Natrium Casein foam by an 
amplitude sweep. Storage modulus, Loss modulus. 
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under microscope over a period of 50 minutes at regular intervals. Figure 3 shows the foam 
decay over 50 minutes for Natrium Casein. Particularly it can be observed that the number of 
bubbles decrease over the time. Two main mechanisms are responsible for this. First, due to 
surface tension the pressure in the small bubble is higher than in the larger one. Thus, the 
small bubbles transfer matter to the large one (Oswald ripening) and disappear as soon as 
their diameter undershoot a critical value (Kelvin instability). The second mechanism is 
connected to tendency of large bubbles to coalescence. As Figure 3 demonstrates, after 5 
minutes a large amount of bubbles is already coalesced. This occurs preferably by gradual 
transition from a bubble into polyhedral foam. According to Neumann`s law, bubbles with 
less than 6 corners become smaller and then disappear over the time. Furthermore, Figure 3 
illustrates that sporadic decay of Natrium casein foam advances rapidly. Thus, it exhibits 
poor stability not only against shear stress but also against sporadic decay. 
  
(ii) Exemplary theoretical results 

 

First theoretical considerations have been carried out in connection with the effect of the 
linearization of the RPE (equation (2)). Varying the named dimensionless parameters and 
choosing an appropriate external excitation pressure 

p , one gets typical responses of the 
bubble surface such as asymptotic oscillations, strictly monotonic decreasing, compression 

or expansion. In Figure 4 the excitation of the bubble is due to a sudden, but small change of 
the dimensionless pressure up to the value 1.01. The bubble responses with a time 
dependent change of the non-dimensional radius )(ta . Note that the last notation also 
stands for the radii )(1 ta  and )(taT

 from (3) and (4). The RK solution has a strictly 
monotonic shape, while both first and second linearization show damped oscillations. The 
asymptote is identical for each of the approximations. For whole milk, at temperature 

CT  20  and atmospheric pressure barpL 01325.1 , one has 3

0 /3.1030 mkg , 

sPa310468.1  , mN /1050 6 , s31002.7   and Pap 74.101030  . For the radius at rest, 

ma 4

0 10  is chosen and finally, the identity 
00   , see Passerini et al 2000, where 

0  is 
negative. In Figure 5 the monotonic decreasing reveals that the gas bubble is compressed 
spherical form-stable. By the achieved results it can be derived a stable behavior of a 
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Fig.4: Response of a foam bubble on a sudden pressure change.  
 

52 - 6



   

gaseous bubble in a viscous liquid under certain assumptions. As it can be seen from the 
above experiments, a next major purpose is the transfer of this to a finite number of bubbles, 
which implies an extension of the literary model mentioned at the beginning. 
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(iii) Preliminary theoretical results on a macroscopic level 

 
In the following, the material relation (8) is used to illustrate the shear viscosity μ and the 

volume viscosity λ as functions of the density ρ for milk foam. At 20 °C, milk with 3.5 % fat 
has constant density ρ0 = 1030.3 kg∙m-3 and constant shear viscosity μ0 = 1.468∙10-3 Pa∙s. 
Figure 6 shows that both viscosities μ and λ decrease with the density ρ and that they grow 
infinitely near ρ0. In agreement with Figure 6, the dynamic as well as the volume viscosity are 
non-linear functions of the density of the foam. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Response of a milk foam bubble on an exponential pressure excitation. 

 
 

Fig.6: Viscosities μ and λ as functions of density ρ for milk foam with 3.5 % fat. 
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Conclusion 

 

This paper shows first results on a project that deals with protein foams. For small values of 
the shear stress the protein foams have a certain load range, where they are stable and even 
show an elastic behavior. Above this range, they are destroyed and behave very similar as a 
liquid. Stability of proteins depends on different parameters for example, concentration, 
temperature, pH-value and etc. The present contribution focusses on the effect of 
concentration. For the future, it is of particular interest to investigate the effect of secondary 
motion on stability of protein foams with 3D-Micro-DPIV. The theoretical background 
provides a special variant of the Rayleigh-Plesset equation derived by means of a literary 
model, see Aksel 1990. Numerical analyses with the classical Runge-Kutta method yield 
curves for the radius of the gas bubble for three different approximations, which reflect 
characteristic properties of the spherical cavity. Using the example of whole milk, it is 
possible to give prognoses with regard to the stability of its foam. On a macroscopic level, 
the efforts are to specify the material functions so that both elongational flows of 
compressible viscoelastic fluids can be adequately approximated by a compressible Rivlin-
Ericksen fluid of second order. The material functions either have to be derived numerically 
from the measurement results of a rheometer or have to be approximated by material 
relations. The impact of shear effects on the foams will be presented elsewhere. 
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